

JV-003-1015041 Seat No. _____

B. Sc. (Sem. V) Examination

October - 2019

Statistics: S-501

(Computational Tech. & R. Language-2018) (New Course)

Faculty Code: 003 Subject Code: 1015041

oubject odde . 1013041						
Time : 2:30 H	Iours] [Total Marks : 70)				
Instructions	 (1) All questions are compulsory. (2) All questions carry equal marks. (3) Students can use their own scientific calculator 	•				
1 (a) Give	answer of following question:	Ļ				
(1)	The dependent variate value in interpolation and extrapolation is called					
(2)	The differences between two consecutive dependent variate values are called difference.					
(3)	The independent variate values in the interpolation are termed as					
	Interpolation and extrapolation approaches are Interpolation and extrapolation are the parts of analysis.					
(b) Write	e any one :)				
(1)	Prove that $(1+\Delta)(1-\nabla)=1$					
(2)	Prove that $\mu^2 = 1 + \frac{1}{4} \delta^2$					

(c) Write any one:

- (1) Prove that $\sqrt{1+\mu^2\delta^2} = 1 + \frac{\delta^2}{2}$
- (2) Prove that $\frac{\Delta^{m+n}}{E^n} = \Delta^m \nabla^n$
- (d) Write any one:

5

- (1) Obtain Greagary Newton's backward Interpolation formula.
- (2) Compute f(0.005) and f(0.37) from the following data by using appropriate method:

x	0	0.10	0.20	0.30	0.4
у	1	1.2214	1.4918	1.8221	2.2255

2 (a) Give answer of following question

- (1) The $(n+1)^{th}$ order finite difference of a n^{th} order polynomial is _____.
- (2) Newton's method of divided differences takes care of the _____ spaced arguments.
- (3) In Newton's backward formula, the origin is the _____ value of the argument in the series.
- (4) Newton's formula for advancing differences is also known as _____ forward.

(b) Write any one:

2

- (1) Prove that relation between forward difference and divided deference.
- (2) If $f(x) = x^3 9x^2 + 17x + 6$ compute f(-1, 1, 2, 3).
- (c) Write any one:

3

- (1) Using Lagrange's interpolation formula find a polynomial which passes from points (0, 648), (2, 704), (3, 729), (6, 792).
- (2) Compute $f(\theta)$ for $\theta = 15^{\circ}$ by using Stirling formula from the following data:

θ	10°	12°	14°	16°	18°	20°
y	0.176327	0.212556	0.249328	0.286745	0.324920	0.363970

(d) Write any one:

5

- (1) Obtain Sterling's formula.
- (2) Obtain Gauss Forward Interpolation formula.
- **3** (a) Give answer of following questions:

- (1) In Weddle's rule, f(x) is a polynomial of _____.
- (2) In Simpson's $\frac{1}{3}$ rule is applicable when the number of intervals n must be _____; in other words, the number of ordinates must be _____.

- (3) In Weddle's rule is applicable when the number of intervals n must be a _____.
- (4) In Simpson's $\frac{1}{3}$ rule, f(x) is a polynomial of _____.
- (b) Write any one:

 \mathbf{for}

- (1) State Newton-cote's quadrature formula for numerical integration.
- (2) Evaluate $\int_0^1 x^3 dx$ Trapezoidal rule with n = 5.
- (c) Write any one:

3

2

- (1) Apply Euler's Maclaurin sum formula to find the sums $\frac{1}{10^2} + \frac{1}{11^2} + \frac{1}{12^2} + \dots + \frac{1}{20^2}$
- (2) Use Talyor's series method to solve $\frac{dy}{dx} = x^2 y$ with y(0) = 1 at x = 0.1, 0.2.
- (d) Write any one:

- (1) Obtain general Quadrature formula.
- (2) Given the differential equation $\frac{dy}{dx} = 3x + y^2$, with the initial condition y = 1 when x = 0, use Picard's method to obtain y for x = 0.1 correct to three decimal places.

- Give the answer of following questions: 4 (a) 4 (1)Newton-Rapshon method has _____ convergence. (2)In method of Regula-Falsi method we choose two points x_0 and x_1 such that $f(x_0)$ and $f(x_1)$ are of _____ sings. (3)The method of interaction is particularly useful for finding the real root of an equation given in the form of an _____ series. If f(a) be negative and f(b) be positive then **(4)** first approximation to the root in Bisection method is $x_1 =$ ____. 2 (b) Write any one: (1)Obtain Newton's formula for inverse. (2)
 - (2) Evaluate $\frac{1}{\sqrt{23}}$ by using Newton's formula. Correct upto seven decimal.
 - (c) Write any one:

(1) Using Newton-Raphson method, find correct upto four decimal places. The root lies between 0 and 1 of equation $x^3 - 6x + 4 = 0$.

(2) Find by the iteration method, the root near 3.8 of equation $2x - \log_{10} x = 7$. Correct upto four decimal place.

	(d)	Write any one:	5
		(1) Explain successive approximation method.	
		(2) Explain Bisection method.	
5	(a)	Give answer of following questions:	4
		(1) If a1 = 8, b1 = 1:12 print(a1%in%b1). Output is	
		(2) If $v1 = c(3, -4, 1)$, $t1 = c(2, 5, 0)$ then print $(v1 \& t1)$. Output is	
		(3) If $a = c(5.5, 6)$, $b = c(3, 5)$ then print(a%/%b). Output is	
		(4) If $v = c(5, 9)$, $t = c(3, 4)$ then print(v%%t). Output is	
	(b)	Write any one:	2
		(1) Explain logical operators with example in R-language.	
		(2) Explain relation operators with example in R-language.	
	(c)	Write any one:	3
		(1) Explain making Data Frame objects and convert it in Matrix object with example in R-language.	
		(2) Explain create Histogram with example in R-language.	

(d) Write any one:

- (1) Explain the Student's T-test in R language.
- (2) Explain making Matrix object and convert it in Data frame with example.